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PREFACE

During its Meeting in Aix-en-Provence, in Fall 1980, a paper was presented by
Mr H.G6del to the Sub-Committee on Aeroelasticity of the Structures and Materials Panel
on the use of structural optimization methods to obtain practical minimum-weight designs
which meet the constraints of loads, stresses, buckling, deflections, divergence and flutter.
Impressive results were exhibited.

The excellent presentation of this advanced application of optimization procedures
was welcomed by the Sub-Committee as being a very important contribution to its activities
in Aeroelasticity. Its publication as an AGARD Report will help dissemination of new
methods and techniques amongst the NATO community.

G.COUPRY
Chairman, Sub-Committee
on Aeroelasticity
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APPLICATION OF A STRUCTURAL OPTIMIZATION PROCEDURE

FOR ADVANCED WINGS

by

H. Gddel
Aerospace Engineer, Aeroelastic Branch

and

G. Schneider
Aerospace Engineer, Aeroelastic Branch

MESSERSCHMITT-BOLKCW-BLOHM GMBH
Airplane Division

P.O.Box 80 11 60, 8000 Munich 80
W.-Germany

SUMMARY

A computer software system called ASAT exists at MBB which allows an automatic
design of minimum weight structures. In this paper, the application of this system to
several structures is described.

It is shown that a structural optimization system can be very useful in the prelimi-
nary design of an airplane, especially when it consists of several modules such as static
load calculation, deformations and stress calculation by finite elements, static aero-
elastics, weight calculation, unsteady aerodynamic forces, vibration calculation, flutter
calculation, flutter and strength optimization which all can be used separately and in-
dependently.

INTRODUCTION

For structural design of modern airplanes, the use of an optimization computer pro-
gram is mandatory in order to achieve a minimum weight structure whilst taking into
account both strength and aeroelastic requirements.

During a cooperation program L17 with the U.S. Air Force Flight Dynamics Laboratory,
the MBB company exchanged several computer programs in return for receiving the FASTOP-
computer-system LZ/. This exchange took place in 1977,and for the last three years, the
structural dynamic group of MBB has further refined the program and also added a static
aeroelastic part to it. This new system is now called ASAT. (Automatische Struktur-Aus-
legung fUr Tragflachen). This paper deals with the application of ASAT.

Several structural examples are treated in this paper:

A simplified structure to show the capabilities of the system (the analysis of this
structure was partly sponsored by the ZTL-Research Program of the German Ministry
of Defense).

Aeroelastic efficiency calcs for fin and rudder.

Structural layout of a carbon fibre composite Delta wing.

TECHNICAL APPROACH

The ASAT-program is able to size cantilevered or free-free surface structures for
flutter speed or strength constraints. It is based on a finite element method. Buckling
of elements is considered. Also minimum skin gauges can be a limiting factor for sizing.
The aeroelastic efficiencies are calculated directly by using the aerodynamic influence
coefficients - no iteration procedure is applied. The mathematical approach can be found
in ZP and Z17.

SIZING OF A SIMPLIFIED METAL WING STRUCTURE FOR STRENGTH AND FLUTTER CONSTRAINTS

In order to try out the computer system, a simplified structural model was chosen
(Fig. 1). The thickness to chord ratio is constant 5 %. The surface is cantilevered.

The conditions which are sizing the skin thickness against buckling are presented
in Fig. 2. Two aerodynamic load cases were defined:

N 8
Load case 1: Ma = 0.9, q = 5.52 Nir J 8

N.5Load case 2: Ma = 1.4, q = 8.28 Nir 0(= 5.50
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f The stationary pressure distributions as calculated by the computer program are
shown in Fig. 3. A transformation procedure is implemented which transfers the aerody-
namic loads from the panel center to the structural grid points.

LOAD CASE 1: MA- 0.9, Q- 5.52 NIcM2,4 .80 LOAD CASE 2: MA= 1. 4, Q- 8.28 N/cM2, Of- 5.5 0

Fig. 3 STATIONARY PRESSURE DISTRIBUTIONS

The optimization process is explained best by Table 1 and 2.

Thicknesses and flutter derivatives for characteristical structural elements for
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the upper and lower skin are printed for successive steps of the optimization procedure.
Initially, a constant skin thickness is provided. After three steps of the SOP-module
(Struktur OPtimierungi a fully stressed design is reached where the last weight chdr.9e
is only O.T-kg. This is plotted in Table 1.

Weight Initial weight for Iteration Step
constant skin thickness 1 2 3

kg 51.4 56.7 55.0 54.3

TABLE I Weight for structural optimization procedure (SOP)

In Table 2, the iteration procedure is shown for selected structural elements. It
starts with the skin thicknesses of step 3 of SOP and then it iterates between FOP
(Flatter OPtimierung) to fulfill the required flutter speed with a minimum weight in-
crease and still keeps the fully stressed design by running through SOP.

olriTR SEIP: LWER SKIN

UPPER COVER SKIN 
LOWER COVER SKIN

THICKNESS Mn THICKNFSS m

Element Start SOP FOP SOP FOP SOP FOP SOP FOP SOP FOP Element Start SOP FOP SOP ,:OP SOP FOP SOP FOP SOP FOP
Value Value

4 2.00 0.76 0.76 0.76 0.96 0.96 0.99 0.99 0.96 0.96 0.96

6 2.00 2.78 2.73 2.64 2.63 2.58 2.58 2.56 2.56 2.56 2.56 36 2.00 0.76 0.76 0.76 0.96 0.96 0.99 0.99 0.96 0.96 0.96

9 2.00 1.58 1.91 1.91 2.96 2.96 3.73 3.73 3.95 395 395 38 2.00 0.79 0.80 0.80 0.98 0.98 0.98 0.98 0.98 0.98 0.98

0 2.00 2.46 2.34 2.62 2.95 2.95 3.12 3.2 2.97 295 2.95 41 2.00 0.76 2.17 2.17 3.92 3.92 4.55 4.55 4.45 4.45 4.45

11 2.00 1.72 1.76 1.85 2,72 2.72 3.43 3.43 3.69 3.69 3.69 42 2.00 0.79 1.59 1.59 2.78 2.78 3.38 3.38 3.46 3.46 3.46

12 2.00 2.13 2.17 2.29 3.05 3.09 3.53 3.53 3.5f 3.51 3.51 43 2.00 0.76 1.84 1.84 3.37 3.37 4.07 4.07 4.14 4.14 4.14

13 2.00 2.18 2.28 2.52 3.13 3.13 3.20 3.20 3.13 3.13 3.13 44 2.00 0.76 1.53 1.53 2.73 2.73 3.30 3.30 3.35 3.35 .35

24 2.00 5.84 5.89 5.88 5.88 5.87 5.86 5.85 5.85 5.85 5.85 45 2.00 0.80 1.94 1.94 2.87 2.87 3.08 3.08 2.98 2.95 '.95

28 2.00 5.39 5.59 5.47 5.47 5.30 5.23 5.16 5.13 5.12 5.12 56 2.00 3.01 3.10 3.02 3.00 2.88 2.85 2.8? Z.81 2.81 2.8t

29 2.00 1.67 1.54 1.53 1.54 1.60 1.64 1.67 1.89 1.69 1.69 60 2.00 2.84 2.97 2.91 -. 90 2.78 2.73 2.69 2.67 2.67 2.67

32 2.00 7.82 8.00 7.94 7.94 7.81 7.76 7.70 7.68 7.68 7.68 61 2.00 0.76 0.76 0.76 0.77 0.77 0.82 0.82 0.81 0.81 0.81
64 2.00 4.55 4.43 4.64 4.63 4.51 4.47 4.42 4.40 4.40 4.40

FLUTTER VELOCITY DERIVATIVES kts/k9

4 10.38 13.41 11.09 10.92 11.30 FLUTTER VELOCITY DERIVATIVES kts/kg
6 2,52 4.09 5.32 5.60 5.S8 36 10.19 13.61 10.98 10.96 11.29

9 17.82 20.50 16.42 13.79 13.16 38 12.37 12.82 9.9 9.42 9.14
41 100.04 27.81 13.92 11.74 12.23

10 7.92 10.85 11.56 10.85 10.97 42 50.07 26.09 15.30 12.85 12.63
11 12.92 18.47 16.49 14.14 13.58 3 50.07 26.0 5.0 12.8 12.63

12 10.39 15.23 13.78 1.13 12.08
4449.40 27.31 15.09 12.69 12.49

13 13.46 13.22 10.79 10.32 10.23 4

24 0.?7 0.62 1.?3 1.32 .3-2 45 72.78 18.68 11.87 11.30 12.01
561.93 2.91 4.10 4.42 4.41

28 -0.29 -0.15 0.14 0.26 O.5
60 -1.01 -0.24 0.96 1.36 1.35

29 0.90 1.58 2.29 2.51 2.46

61 6.37 8.82 11.57 12.03 12.1632 -0.50 -0.46 -0.34 -0.29 -0.28
64 -1.25 -1.11 -0.81 -0.66 -0.63

FINAL ST UCTUNAL WIG HT 64.6 kg

TABLE 2 Optimization Progress for selected structural elements

The elements most important for flutter speed (stiffness change) are underlined. It
is interesting to note that for instance the upper skin is mostly designed by strength
requirements whereas the lower skin thickness can be used to raise the flutter speed
by a stiffness change. After a constant flutter derivative for each important flutter
element is reached then the process is finished. Graphically, this is shown in Fig. 4.
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Fig. 4 RESULTS OF REDESIGN STUDY

A flutter speed is calculated for the initial fully stressed design (FSD) being
700 kts. After five iteration steps, the desired flutter speed of 900 kts is reached
with an increase of less than 3 % of total weight. The loss of flutter speed from 2' to
2 and 3' to 3 can be explained this way: The program uses the old vibration modes to
get from 1 to 2', but these modes change a little which is reflected in point 2. When
the structural changes are smaller and smaller then the modes stay practically the
same (see point 4', 4 and 5). In Fig. 5, the elastic deformations before and after opti-
mization are shown.

In Fig. 6, the vibration mode shapes are depicted. From this picture, it can be
seen that the mode shapes stay almost the same, and only the frequencies are changed.
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The program FOP has also the possibility to increase flutter speed by mass balan-
cing. Seven mass positions at the outer wing to apply balance masses were provided but
the flutter derivatives were so small that this possibility was neglected automatically.

The final results are presented in Fig. 8 and 9 as skin thicknesses for the upper
and lower skin before and after optimization. Also the stress ratios - which should be
unity when fully stressed - and the flutter derivatives are shown.

COVER SKIN THICKNESSES CULOVER SKIN THICKNESSES A V

'UPPER VALUES AFTER INITIAL FSD OPTIMIZATION UPPER VALUES AFTER INITIAL FSD OPTIMIZATION

LONE AVSATSFUTE PIRZTU OER VALUES AFTER FLUTTER OPTITTIZATION

g0 0

FLUTTER VELOCITY DERIVATIVES FLUTTER VELOCITY DERIVATIVES

FIG. 8 REDESIGN RESULTS FOR UPPER FIG. 9 REDESIGN RESULTS FOR LOWER

COVER SKIN COVER SKIN

The normal force flow for load case 2 is shown in Fig. 10 as a typical example of the
strength calculation.

4A
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Fig. 10 NORMAL FORCE FLOW IN SPAR DIRECTION FOR LOAD CASE 271
ThisComparisons for stress calculations with different elements are presented in Fig.11.
This figure proves that with a relative crude element and mesh system good correlation
with analyses using more sophisticated elements - such as NASTRAN (triangular membrane
with linearly varying stress) - can be achieved. This is an important result because the
cruder the idealization can be, the less computer time is needed to run the optimization
program.

A FRONT SPAR B

C MIDDLE SPAR D
A

IDEALIZATIONS:

E AEROD"AMIC

A QUADRILATERAL MEMBRANE
B WITH CONSTANT STRESS

TRIANGULAR MEMBRANE

WITH CONSTANT STRESS
.......... RUDDERi!<

TRIANGULAR MEMBRANE TR

WITH LINEAR STRESS

REAR SPAR F X ATTAC HENT

Fig. 11 STRESSES FOR DIFFERENT ELEMENT Fig. 12 IDEALIZATION OF A CFC-VERTICAL TAIL
TYPES AND MESH SYSTEMS
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AEROELASTIC EFFICIENCY CALCULATION FOR A CFC FIN AND RUDDER

For the structural design of fin and rudder,stiffness considerations are over-

riding and not strength. Also the size of these surfaces is influenced by their aero-
elastic efficiency. The program ASAT was used to calculate the efficiency for a fin
and rudder of a modern fighter plane. The aeroelastic deformations were calculated
directly without using any iteration procedure which is possible because a full matrix
of aerodynamic influence coefficientis produced by the aerodynamic module of ASAT.

The properties of CFC were introduced by the stress-strain law.

Fig. 12 shows the structural idealization for a CFC-fin and rudder. Fig. 13 shows
the deflections of the structure due to a steady load case.

SEMI-SPAN 1990 MM T[ TOTAL LOAD

z; _ Z U PY = 98.5 KN

"- MAX. DEFLECTION 228 MM

UNDEFORMED STRUCTURE

Fig. 13 DEFLECTION DUE TO A STATIC LOAD

Fig. 14 presents relatively large changes in the pressure distributions due to
elastic fin deformations especially for the subsonic case.

80 - - - . . . ..___ __ _ ________ _______

f .3 0 00.0 RIGID

C - A
toj/J IRGD__ _ A II

N~R .- IIA .GRIGI

2.0) -. -

y I0 ) RELATIVE CHORD 0/C
00 DEFLECTION C-1 so DEFLECTIOIN

5. 0-0 1.0

0-5.0 - - - - - - - - - - - -

Fig. 14 PRESSURE DISTRIBUTIONS AND DEFOR- Fig. 15 PRESSURE DISTRIBUTIONS AND DEFOR-

MATIONS AT SECTION A-A DUE TO A MATIONS AT SECTION A-A DUE TO A
FIN ANGLE OF ATTACK 3 RUDDER ROTATION ANGLE 9
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Fig. 15 is depicting even larger effects on the fin pressure distribution due to
rudder angle when elastic effects are considered.

Fig. 16 and Fig. 17 present the aeroelastic effectiveness of fin and rudder, and it
is shown that the requirements which were postulated by the aerodynamic department can
almost be fulfilled.

1.0 1,0

0.9 o.9

0.8 - 0 ' .8

9
m 07 0.7

f 0.6-- .6e- \- -0

4 .~~~~ 0.------------ -

. 4 5 'M 0.4
C r

04 0
0.3----------------- 0.3-- -

0.2 -- _ 0.2------ -------

0.------------- 0.1--------------

0 20 40 60 80 100 120 0 20 40 60 80 100 120

DYNAMIC PRESSURE [kN/m z ]  DYNAMIC PRESSURE [kN/m z]

Fig. 16 VERTICAL TAIL AEROELASTIC Fig. 17 RUDDER EFFECTIVENESS
EFFECTIVENESS

STRUCTURAL OPTIMIZATION OF A CFC-DELTA-WING

For a preliminary design of a CFC-Delta-Wing, a structural optimization was perfor-
med to achieve a minimum weight structure by retaining sufficient control surface
effectiveness. An additional constraint - a certain amount of wing twist off at a high
g-manouvre - had to be fulfilled as well L_7-

The direction of the laminates were selected in prestudies by the MBB-stress de-
partment which have accumulated a lot of experience with the CFC material over the last
years 7.

Despite the fact that a huge amount of papers has been published lately about aero-
elastic tailoring with CFC, it is our opinion that the possibilities for laying the
laminates are limited for two major reasons:

Material properties are only known for specific composites.

Production considerations are dominating.

For these reasons, we took the preselected material properties L17 and fed it into
the ASAT program as

5 y A 2 1 A1 2  A 2 3 y

r x A3 1 A32 A33 4X
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The structure is practically idealized as a thin sandwich plate with the stress
carrying capability in the skin. Deformation results for this model were compared with
results calculated by the stress group who had a much finer grid, and good correlation
was achieved.

Calculations were performed for the idealized structure of Fig. 18 and Fig. 19.

I'

Is

* AERO ELEMENTS STES RUI ' STRESS GROUP

A TSTRUCTURAL MDEL
UIx

l WING BOX "

Ail,
Fig. 18 IDEALIZED DELTA WING FOR STRUCTU-

RAL DESIGN STUDIES

;x ASAT MDEL

Fig. 19 WING BOX STRUCTURE Fig. 20 COMPARISON OF DIFFERENT WING BOX
IDEALIZATION

The structure is represented as follows:

Grid points: 106

Degrees of freedom: 278

Membranes: 74

Rod elements: 55

Shear panels: 67

* The final result of these calcs were skin thicknesses adjusted to strength and
buckling requirements and the effectivenesses for the control surfaces.

Fig. 20 shows the stress group grid and that one used by ASAT. Only from looking
at these pictures, one can imagine that local stress concentrations - at attachments for
instance - cannot be accounted for by the ASAT-idealization. For this reason, it is al-
ways necessary to follow up the optimization process with a normal stress analysis to
confirm the results.
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DETERMINATION OF LOADS

Two load cases were chosen according to the definitions of our loads group L87:

Load case 1: Symmetrical high g pullout
This is a manouvre case in the subsonic regime
giving the highest shear force and bending moment
at the wing root.

Load case 2: This is a roll case in the supersonic flight regime
were the aerodynamic center of pressure is back-
ward. This case is not symmetrical (initiated by
the ailerons) but was applied to both wings
symmetrically.

In order to make the loads calculated by ASAT comparable to the loads from our loads
group, the wing attitude and aileron angles are somewhat different - the presence of a
canard had to be reflected which the ASAT program is not able to consider at the moment.

RESULTS OF DEFORMATION CALCULATIONS WITH ASAT AND COMPARISONS

After establishing the structural model and the loads, deformation calculations were
performed which match the stress group results very well. Implicitly, this is also a
prove that comparable loads were used. Fig. 21 shows the vertical deflection along the
wing span for load case 1.

60

[cm] -- ASAT MODEL

40 -,'

-- --- STRESS GROUP MODEL

20

012 3 4

S.i'',"ISE DIRECTION Y [m]

Fig. 21 COMPARISON OF WING DEFLECTIONS

In Fig. 22, the wing twist angle along the span is depicted. The 4V twist off
angle at the wing tip fulfills the requirement coming from aerodynamic performance.

Uj- 2

wZ
W - - ASAT MODEL

-- STRESS GROUP MODEL
6
1 2 3 4 5

SPANWISE DIRECTION Y [m]

Fig. 22 COMPARISON OF WING TWIST ANGLE 0(

A . . . I I . . ... . . . ." I I -
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In Fig. 23, the internal skin load distribution for load case 1 is presented. From
this figure, it can be deduced that extreme care must be taken to accomodate such high
local forces into the two rear CFC attachments fitted to the fuselage.

SKIN THICKNESSES S InmMI 212

PRELIMINARY UPPER SKIN
DESiGN LOWER SKIN

.4 Nj a. . / / .'/ f '2 .6 '. f3
i '

"2 .".5/

Fig. 23 INTERNAL SKIN LOA DISTRIBUTION Fig. 24 WEIGHT OPTIMIZED SKIN THICKNESS
ACCORDING TO STRENGTH CRITERIA (SUB-
SONIC AD SUPERSONIC A CASES)

* RESULTS OF THE OPTIMIZATION PROCESS

After three steps of the SOP program, the skin weight stayed almost constant. The

final weight was

Step Skin Weight Lk27

1 221.7

2 164.4

3 163.9

4 164.1

practically reached after the first step but the convergence had to be proven.

The weight saving amouts to about 5 % of the total wing weight which is a very

considerable achievement.

Fig. 24 shows the skin thickness distributions before and after structural optimiza-
tion.
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1.0

0-

0 20 40 60 80 100 120

DYNAMIC PRESSURE [kNlm2]

Fig. 25 WING-FLAP CONTROL EFFECTIVENESS

The aeroelastic efficiencies for the aileron are shown in Fig. 25 together with the
effectiveness definition to fulfill the roll requirement. For the supersonic case where
the roll manouvre is iniated with the two inner flaps only we have higher than required
efficiency. For the subsonic pullout manouvre, the efficiency for all four flaps is
somewhat below the requirement but it still is sufficient.

CONCLUSIONS

In this paper, it was shown that the very useful structural optimization program
ASAT exists at MBB which was used for several practical design studies.

The major advantage of the system is that it merges several airplane designing
disciplines such as:

static loads

stress calculations

unsteady aerodynamics

flutter calculations

static aeroelastics

weights

For this reason, communication errors are avoided.

Due to the versatility of the computer system, separate modules of it can be used
solely, and it is also possible to make cross checks with results from other structural
design groups. CFC structures can be treated efficiently, and the design goals postula-
ted from aerodynamic performance could be reached.
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calculation, unsteady aerodynamic forces, vibration calculation, flutter calculation, flutter
and strength optimization which all can be used separately and independently.
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